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1. INTRODUCTION 

 The objective of this research is to evaluate the 

performance of the hybrid ensemble transform Kalman 

filter three-dimensional variational (ETKF-3DVAR) data 

assimilation scheme (Wang et al. 2008a,b) that was 

developed for the Weather Research and Forecasting 

(WRF) model (Skamarock et al. 2008) and to explore 

potential improvements in the hybrid scheme.  I employ 

realistic NWP experiments with various ensemble 

formulations to provide flow-dependent error covariances 

to the hybrid cost function that fit the observations.  I 

conduct experiments of the hybrid system using ensembles 

that include ETKF initial perturbations, as well as physical 

parameterization diversity to account for model error.   

 

2. DESCRIPTION OF THE HYBRID SCHEME 

 The WRF hybrid ETKF-3DVAR system adapts the 

extended control variable methodology (Lorenc 2003) to 

include estimates of ensemble covariance in the standard 

3DVAR scalar cost function.  The hybrid incremental cost 

function is defined as 
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Thus, the hybrid analysis increment, defined as 
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the sum of the 3DVAR analysis increment and the 

increment associated with the ensemble covariance.  In (2), 

1
x  is the 3DVAR analysis increment, (x1 - x

b), where xb is 

the background or first-guess vector. The vector xe contains 

the ensemble perturbations about the mean normalized by 

(K-1)1/2, where K is the ensemble size.  The extended 

control variables, αk are vectors that multiply xe, where ◦ is 

the Schur product (element by element product).  The 

vector α is formed by concatenating K vectors αk, k = 

1,…,K.  The vector yo is the observation vector, and yo’ = yo 

–Hxb is the innovation vector (observation minus the 

background transformed to observation space).    The block 

diagonal matrix A, with K blocks containing prescribed 

correlation matrices S, defines the spatial correlation of α, 

thereby defining the scale of the ensemble error covariance 

localization. A full derivation of these equations is given in 

Lorenc (2003) and references therein. Terms H, B and R in 

(1) are the standard observation operator and background 

and observation error covariance matrices, respectively.  

Adjustable terms β1 and β2 determine the weights of the 

3DVAR background-error covariances and the ensemble 

covariance.  The restriction that 1/β1 + 1/β2 = 1 ensures that 

the total background error covariances are conserved 

(Wang et al. 2008a).  Thus, when 1/β1 = 1, the analysis is 

determined solely by the 3DVAR static background error 

covariances, while 1/β2 = 1 means that the analysis is 

determined solely by the ensemble covariances.   

 The ensemble transform Kalman filter (ETKF; Bishop 

et al. 2001; Wang and Bishop 2003) is used to transform 

forecast perturbations into analysis perturbations in a 

manner that is consistent with the EnKF analysis update 

equation.  The analysis perturbations then are added to the 

hybrid analysis field to produce a new set of initial 

conditions for the next forecast cycle.  ETKF is considered 

sub-optimal since it does not include covariance 

localization causing it to rely heavily on covariance 

inflation.  Thus, an alternative to ETKF that is completely 

contained within and consistent with the WRF hybrid cost 

function minimization is explored in this study. 

 

3.  PROPOSED ALTERNATIVE TO ETKF 

 The proposed alternative to ETKF is termed the hybrid 

Lanczos ensemble filter (HLEF).  The hybrid analysis 

increment xwas defined previously in (2) as the local 

(Schur product) linear combination of ensemble 

perturbations.  The ETKF formulation does not include a 

contribution from the 3DVAR background error 

covariance.  Therefore, neglecting for now the contribution 

from the increment associated with 3DVAR, the analysis 

increment (2) is defined as 

                  





K

k

e

kk

1

)( xx 
. 

Thus, if the analysis increment is determined solely by 

ensemble perturbations (i.e., 1/β2=1), the analysis-error 

covariance in state space Pa is defined as in the Maximum 

Likelihood Ensemble Filter (MLEF: Zupanski et al. 2008; 

Zupanski 2005), by 
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represents the inverse Hessian of the cost function, or an 

appropriate equivalent, at the optimal point in the sub-space 

spanned by the ensemble perturbations.  The ETKF 

transform used in the current study provides an equivalent 

eigenvalue decomposition of the generalized form K-1 

(Zupanski et al. 2008).  Here, instead of approximating K-1 

with ETKF that describes the analysis-error covariance 



2 

 

corresponding to EnKF, the estimation of K from the 

Lanczos minimization algorithm is exploited to 

approximate K with Ln, where 

                n ( )n n n n T T
L Q L D L Q

  
represents the approximation of K after n iterations of the 

cost function minimization.  Here, Qn contains the n 

Lanczos vectors, and Dn and Ln are diagonal and lower bi-

diagonal matrices (see Golub and Van Loan (1996) for 

details).  As the number of iterations n increases, Ln 

becomes a better approximation of K.  Therefore, the 

ability of Ln to approximate K depends on the degrees of 

freedom available for minimization.  For a K-member 

ensemble, one can expect at most that the n = K largest 

eigenvalues of Ln will emerge from the minimization 

process.  The eigenvalue decomposition of L-1/2 is used to 

construct a symmetric square-root matrix representing      

K-1/2, similar to both ETKF and MLEF. 

 By prescribing the correlation matrix A in (1), as in 

Wang et al. 2008ab, the effect is to localize control 

variables with a Gaussian function that reduces the 

coefficients’ influence to a user-determined horizontal 

distance surrounding an assimilated observation.  This has 

the effect of increasing the degrees of freedom that are 

available to the DA system (Lorenc 2003).   It is 

hypothesized that the additional degrees of freedom and 

removal of spurious correlations at distant grid points 

through localization will improve the estimate, thereby 

providing more skillful initial ensemble perturbations than 

ETKF.  Furthermore, HLEF also includes the effect of 

hybridization as governed by the adjustable terms β1 and β2, 

also not possible with ETKF. 

 

4. METHODOLOGY 

 The study domain was centered over East Asia using 

version 3.2 of the Advanced Research WRF (ARW).  The 

experiments used a 45-km horizontal grid spacing with 160 

× 160 grid points, 35 vertical levels, and a model top at 50 

hPa.  The simulations were run for a month period (1 

March through 31 March 2010) to ensure that the filter had 

time to converge to a steady analysis cycle.  The initial 

ensembles at the start of the assimilation cycle, and the 

LBC ensembles throughout the cycles, were generated by 

adding random perturbations to the NCEP FNL analysis.  

The random perturbations were taken from a normal 

distribution with zero mean and with the same covariance 

as the WRF 3DVAR background-error covariance (Torn et 

al. 2006).  Model error is represented by constructing a 20-

member ensemble with varying configurations of physical 

parameterizations.  The results, including implicit model 

error, will be compared to those from a single model 

configuration.  Then, the proposed HLEF ensemble 

generation algorithm is tested and compared to the ETKF 

cycling ensemble. 

 

5. SUMMARY OF RESULTS 

 4a. Ensemble spread 

 The ETKF perturbations used as an ensemble-

generation scheme were able to maintain the ensemble 

spread that is appropriate for the WRF hybrid scheme.  

However, rank histograms of the ensemble spread indicate 

that the ensembles are systematically under-dispersive. 

Conversely, the inflation coefficient that measure the ration 

of innovation variance over ensemble variance converge to 

unity, indicating that the ensembles’ spread is adequate.  

Since these diagnostic tools rely on imperfect observations 

the true degree of skill cannot be known for sure.      

 The multi-physics ETKF ensemble improved the 

characteristics of ensemble spread compared to the single-

physics ensemble by allowing the ensemble spread to 1) 

reduce dependence on covariance inflation, 2) sample a 

larger range of innovation variance, and 3) maintain 

variance more evenly in the available directions of 

ensemble sub-space. 

 The multi-physics ETKF ensemble was characterized 

by larger (smaller) error growth (reduction) during the 

model integration than the single-physics ensemble as 

measured by ensemble spread.   Ensemble error reduction 

is an area of concern since ETKF perturbations should 

excite fast-growing errors and cause ensemble spread to 

increase, not decrease.  Including physical-parameterization 

diversity appears to mitigate this issue. 

 Use of the ensemble mean as the first guess in the 

3DVAR cost function significantly improved the skill of 

the analyses. 

 Tuning the static 3DVAR background error covariances 

using the ETKF ensemble perturbations instead of time-

lagged perturbations improved the skill of the deterministic 

and ensemble 3DVAR analyses as measured by 12- 

through 48-h deterministic forecast skill. 

 

 4b. Hybrid data assimilation 

 Incorporating ensemble-based flow-dependent error 

covariances from limited 20-member ensembles into the 

hybrid cost function added significant skill to the analyses.  

This added skill was in addition to the skill achieved by 

using the ensemble mean as the first guess and using the 

tuned background error covariances.   See Fig. 1. 

 The greatest improvements in analysis skill were 

observed when a multi-physics ensemble was used to 

supply error covariances to the hybrid cost function. See 

Fig. 1. 

 Vertical localization adds skill (although not 

statistically significant) to the analyses of wind components 

but mostly at longer lead times and when the localization 

length scale is less restrictive.  See Fig. 2. 

  

 4c. Proposed alternative to ETKF 

 The proposed HLEF ensemble generation scheme was 

shown to be equivalent to the ETKF scheme (as theory 

suggests) when no inflation was applied and the HELF 

perturbations did not include the effect of covariance 

localizations or hybridization.  

 Both vertical and horizontal covariance localization in 

the HLEF perturbations ameliorated the under estimation of 

analysis uncertainty. 

 10-day cycling experiments with adaptively-inflated 

and localized HLEF perturbations required less than 30% 

of the inflation required by ETKF.  See Fig. 3. 

 Experiments addressed the possibility of producing 

analysis perturbations that are consistent with the hybrid 

variational cost function by including the effect of 

covariance localization and hybridization of the hybrid cost 
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function thereby reducing the dependence of covariance 

inflation.  Further work is needed to fully explore this 

approach. 

 

REFERENCES 

Bishop C. H., B. J. Etherton, and S. J. Majumdar, 2001: 

Adaptive sampling with the ensemble transform Kalman 

filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 

420–436. 

 

Golub,G. H. and C. F.Van Loan,1996: Matrix 

Computations, John Hopkins University Press, Baltimore 

 

Lorenc A. C., 2003: The potential of the ensemble Kalman 

filter for NWP—A comparison with 4Dvar. Quart. J. Roy. 

Meteor. Soc., 129, 3183–3203. 

 
Skamarock W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. 

M. Barker, W. Wang, and J. G. Powers, 2008: A 

description of the Advanced Research WRF version 3. 

NCAR Tech. Note NCAR/TN-475+STR. 

 

Torn R. D., G. J. Hakim, and C. Snyder, 2006: Boundary 

conditions for limited-area ensemble Kalman filters. Mon. 

Wea. Rev., 134, 2490–2502. 

 

Wang, X., D.M. Barker, C. Snyder, and T.M. Hamill, 

2008: A hybrid ETKF–3DVAR data assimilation scheme 

for the WRF model. Part I: Observing system simulation 

Experiment. Mon. Wea. Rev., 136, 5116–5131. 

 

Wang X., D. M. Barker, C. Snyder, and T. M. Hamill, 

2008: A hybrid ETKF–3DVAR data assimilation scheme 

for the WRF Model. Part II: Real observation 

experiments. Mon. Wea. Rev., 136, 5132–5147. 

 

Wang X., and C. H. Bishop, 2003: A comparison of 

breeding and ensemble transform Kalman filter ensemble 

forecast schemes. J. Atmos. Sci., 60, 1140–1158. 

 

Zupanski, M, 2005: Maximum likelihood ensemble filter: 

Theoretical aspects. Mon. Wea. Rev., 133, 1710–1726.  

 

Zupanski, M., D. Zupanski, D. F. Parrish, E. Rogers, G. 

DiMego, 2002: Four-dimensional variational data 

assimilation for the blizzard of 2000. Mon. Wea. Rev., 130, 

1967–1988. 

 

 
Fig. 1. Percent reduction of time averaged wind component rmse scores for 

hybrid experiments using 1/2 =0.2 (i.e., 20% contribution from ensemble-based 

covariances) compared to ensemble 3DVAR.  Results for four horizontal 

localization length scales (S) are shown: 250-km (dotted), 500-km (dashed), 

1000-km (dot/dash), and 1500-km(3-dot/dash).  Left panels are for multi-physics 

experiments compared to ensemble 3DVAR with 3DVAR background error 

covariance using the ensemble method with a multi-physics ETKF ensemble.  

Right panels are for single-physics experiments compared to ensemble 3DVAR 

with 3DVAR background error covariance using the ensemble method with a 

single-physics ETKF ensemble.  Scores are shown for 12-h deterministic 

forecasts from each of the 59 analyses from 1200 UTC 1 March through 0000 

UTC 31 March 2010.  (+) symbols indicate statistically-significant differences at 

the 95% confidence interval.  Values greater than zero indicate improvement, 

while negative values indicate degraded forecast skill. 
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Fig. 2. Cross sections for pseudo observation experiment showing the analysis increments for constant length scale vertical 

covariance localization functions. Left panel shows analysis increments with 26 grid point vertical localization and right panel is 

shows two grid point vertical localization. 

 
 

 

 

 

Fig. 31. Adaptive inflation coefficients (top) and inflation factors (bottom dashed) for the 10-day cycling experiment from 1-10 March 2010 for single-

physics cycling ensemble simulations using ETKF (―no_phys‖ in the figure) with adaptive inflation factor and HLEF with horizontal localization 

(1000 km) and adaptive inflation factor.  The number of observations (solid line) is shown in the bottom panel. 
 


